fuzzy linear regression based on least absolutes deviations
Authors
abstract
this study is an investigation of fuzzy linear regression model for crisp/fuzzy input and fuzzy output data. a least absolutes deviations approach to construct such a model is developed by introducing and applying a new metric on the space of fuzzy numbers. the proposed approach, which can deal with both symmetric and non-symmetric fuzzy observations, is compared with several existing models by three goodness of t criteria. three well-known data sets including two small data sets as well as a large data set are employed for such comparisons.
similar resources
FUZZY LINEAR REGRESSION BASED ON LEAST ABSOLUTES DEVIATIONS
This study is an investigation of fuzzy linear regression model for crisp/fuzzy input and fuzzy output data. A least absolutes deviations approach to construct such a model is developed by introducing and applying a new metric on the space of fuzzy numbers. The proposed approach, which can deal with both symmetric and non-symmetric fuzzy observations, is compared with several existing models by...
full textFuzzy Linear Regression Based on Least Absolutes Deviations
This study is an investigation of fuzzy linear regression model for crisp/fuzzy input and fuzzy output data. A least absolutes deviations approach to construct such a model is developed by introducing and applying a new metric on the space of fuzzy numbers. The proposed approach, which can deal with both symmetric and non-symmetric fuzzy observations, is compared with several existing models by...
full textFuzzy least-squares algorithms for interactive fuzzy linear regression models
Fuzzy regression analysis can be thought of as a fuzzy variation of classical regression analysis. It has been widely studied and applied in diverse areas. In general, the analysis of fuzzy regression models can be roughly divided into two categories. The 0rst is based on Tanaka’s linear-programming approach. The second category is based on the fuzzy least-squares approach. In this paper, new t...
full textRegression Model Estimation Using Least Absolute Deviations , Least Squares Deviations and Minimax Absolute Deviations Criteria
Regression models and their statistical analyses is the most important tool used by scientists in data analyses especially for modeling the relationship among random variables and making predictions with higher accuracy. A fundamental problem in the theory of errors, which has drawn attention of leading mathematicians and scientists since past few centuries, was that of fitting functions. For t...
full textA robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of fuzzy systemsPublisher: university of sistan and baluchestan
ISSN 1735-0654
volume 9
issue 1 2012
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023